COMPARABILITY OF RADIOCARBON MEASUREMENTS IN DISSOLVED INORGANIC CARBON OF SEAWATER PRODUCED AT ETH-ZURICH

Author:

Castrillejo MaxiORCID,Hansman Roberta L,Graven Heather D,Lester Joanna G,Bollhalder Silvia,Kündig Kayley,Wacker LukasORCID

Abstract

ABSTRACT Radiocarbon observations (Δ14C) in dissolved inorganic carbon (DIC) of seawater provide useful information about ocean carbon cycling and ocean circulation. To deliver high-quality observations, the Laboratory of Ion Beam Physics (LIP) at ETH-Zurich developed a new simplified method allowing the rapid analysis of radiocarbon in DIC of small seawater samples, which is continually assessed by following internal quality controls. However, a comparison with externally produced 14C measurements to better establish an equivalency between methods was still missing. Here, we make the first intercomparison with the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility based on 14 duplicate seawater samples collected in 2020. We also compare with prior deep-water observations from the 1970s to 1990s. The results show a very good agreement in both comparisons. The mean Δ14C of 12 duplicate samples measured by LIP and NOSAMS were statistically identical within one sigma uncertainty while two other duplicate samples agreed within two sigma. Based on this small number of duplicate samples, LIP values appear to be slightly lower than the NOSAMS values, but more measurements will be needed for confirmation. We also comment on storage and preservation techniques used in this study, including the freezing of samples collected in foil bags.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archeology

Reference22 articles.

1. Storage and Hydrolysis of Seawater Samples for Inorganic Carbon Isotope Analysis

2. GEOSECS Atlantic Radiocarbon

3. GLOBAL OCEAN RADIOCARBON PROGRAMS

4. Sanchez-Franks, A. et al 2020. Cruise report of expedition 740H20200119 (JC191, 24 N) [WWW document]. URL https://cchdo.ucsd.edu/cruise/740H20200119 (accessed 2022-10-11).

5. Bats: A new tool for AMS data reduction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3