Author:
DENG MOU-JIE,HUANG DONG-MING
Abstract
Let $a,b,c$ be a primitive Pythagorean triple and set $a=m^{2}-n^{2},b=2mn,c=m^{2}+n^{2}$, where $m$ and $n$ are positive integers with $m>n$, $\text{gcd}(m,n)=1$ and $m\not \equiv n~(\text{mod}~2)$. In 1956, Jeśmanowicz conjectured that the only positive integer solution to the Diophantine equation $(m^{2}-n^{2})^{x}+(2mn)^{y}=(m^{2}+n^{2})^{z}$ is $(x,y,z)=(2,2,2)$. We use biquadratic character theory to investigate the case with $(m,n)\equiv (2,3)~(\text{mod}~4)$. We show that Jeśmanowicz’ conjecture is true in this case if $m+n\not \equiv 1~(\text{mod}~16)$ or $y>1$. Finally, using these results together with Laurent’s refinement of Baker’s theorem, we show that Jeśmanowicz’ conjecture is true if $(m,n)\equiv (2,3)~(\text{mod}~4)$ and $n<100$.
Publisher
Cambridge University Press (CUP)
Reference16 articles.
1. A note on the Diophantine equation (a
2 - b
2)
x
+ (2ab)
y
= (a
2 + b
2)
z;Deng;J. Nat. Sci. Heilongjiang Univ.,2002
2. On Jeśmanowicz’ conjecture concerning primitive Pythagorean triples. II
3. On Jeśmanowicz’ problem for Pythagorean numbers;Deḿjanenko;Izv. Vyssh. Uchebn. Zaved. Mat.,1965
4. A note on Jeśmanowicz' conjecture
5. A note on the Diophantine equation $a^x + b^y = c^z$
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献