Abstract
AbstractWe present a Mordell–Weil sieve that can be used to compute points on certain bielliptic modular curves
$X_0(N)$
over fixed quadratic fields. We study
$X_0(N)(\mathbb {Q}(\sqrt {d}))$
for
$N \in \{ 53,61,65,79,83,89,101,131 \}$
and
${\lvert d \rvert < 100}$
.
Publisher
Cambridge University Press (CUP)