Quadratic points on modular curves with infinite Mordell–Weil group

Author:

Box Josha

Abstract

Bruin and Najman [LMS J. Comput. Math. 18 (2015), no. 1, 578–602] and Ozman and Siksek [Math. Comp. 88 (2019), no. 319, 2461–2484] have recently determined the quadratic points on each modular curve X 0 ( N ) X_0(N) of genus 2, 3, 4, or 5 whose Mordell–Weil group has rank 0. In this paper we do the same for the X 0 ( N ) X_0(N) of genus 2, 3, 4, and 5 and positive Mordell–Weil rank. The values of N N are 37, 43, 53, 61, 57, 65, 67, and 73.

The main tool used is a relative symmetric Chabauty method, in combination with the Mordell–Weil sieve. Often the quadratic points are not finite, as the degree 2 map X 0 ( N ) X 0 ( N ) + X_0(N)\to X_0(N)^+ can be a source of infinitely many such points. In such cases, we describe this map and the rational points on X 0 ( N ) + X_0(N)^+ , and we specify the exceptional quadratic points on X 0 ( N ) X_0(N) not coming from X 0 ( N ) + X_0(N)^+ . In particular, we determine the j j -invariants of the corresponding elliptic curves and whether they are Q {\mathbb {Q}} -curves or have complex multiplication.

Funder

Engineering and Physical Sciences Research Council

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference45 articles.

1. Abelian varieties and curves in 𝑊_{𝑑}(𝐶);Abramovich, Dan;Compositio Math.,1991

2. J. Balakrishnan, A. Best, F. Bianchi, B. Lawrence, S. Müller, N. Triantafillou, and J. Vonk, Two recent 𝑝-adic approaches towards the (effective) mordell conjecture, arXiv:1910.12755.

3. Quadratic Chabauty and rational points, I: 𝑝-adic heights;Balakrishnan, Jennifer S.;Duke Math. J.,2018

4. Explicit Chabauty-Kim for the split Cartan modular curve of level 13;Balakrishnan, Jennifer;Ann. of Math. (2),2019

5. Bielliptic modular curves;Bars, Francesc;J. Number Theory,1999

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computing quadratic points on modular curves ₀();Mathematics of Computation;2023-10-03

2. Rational points on X0+(125);Expositiones Mathematicae;2023-09

3. Cyclic isogenies of elliptic curves over fixed quadratic fields;Mathematics of Computation;2023-08-30

4. The rational torsion subgroup of J0(N);Advances in Mathematics;2023-08

5. Quadratic Chabauty for modular curves: algorithms and examples;Compositio Mathematica;2023-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3