Abstract
Let $S$ be a semigroup possibly with no identity and $f:S\rightarrow \mathbb{C}$. We consider the general superstability of the exponential functional equation with a perturbation $\unicode[STIX]{x1D713}$ of mixed variables $$\begin{eqnarray}\displaystyle |f(x+y)-f(x)f(y)|\leq \unicode[STIX]{x1D713}(x,y)\quad \text{for all }x,y\in S. & & \displaystyle \nonumber\end{eqnarray}$$ In particular, if $S$ is a uniquely $2$-divisible semigroup with an identity, we obtain the general superstability of Lobačevskiǐ’s functional equation with perturbation $\unicode[STIX]{x1D713}$$$\begin{eqnarray}\displaystyle \biggl|f\biggl(\frac{x+y}{2}\biggr)^{2}-f(x)f(y)\biggr|\leq \unicode[STIX]{x1D713}(x,y)\quad \text{for all }x,y\in S. & & \displaystyle \nonumber\end{eqnarray}$$
Publisher
Cambridge University Press (CUP)
Reference9 articles.
1. On a Theorem of Baker, Lawrence and Zorzitto
2. The stability of the equation f (x + y) = f (x)f (y);Baker;Proc. Amer. Math. Soc.,1979
3. An answer to a question of Th. M. Rassias and J. Tabor on mixed stability of mappings;Gǎvrutǎ;Bul. Ştiinţ. Univ. Politeh. Timiş. Ser. Mat. Fiz.,1997
4. Stability of exponential functional equations with involutions;Chung;J. Funct. Spaces Appl.,2014
5. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. STABILITY OF AN EXPONENTIAL-MONOMIAL FUNCTIONAL EQUATION;Bulletin of the Australian Mathematical Society;2018-03-28