Abstract
Let $N$ be a fixed positive integer and $f:\mathbb{R}\rightarrow \mathbb{C}$. As a generalisation of the superstability of the exponential functional equation we consider the functional inequalities $$\begin{eqnarray}\displaystyle & \displaystyle \big|f\big(\!\sqrt[N]{x^{N}+y^{N}}\big)-f(x)f(y)\big|\leq \unicode[STIX]{x1D719}(x), & \displaystyle \nonumber\\ \displaystyle & \displaystyle \big|f\big(\!\sqrt[N]{x^{N}+y^{N}}\big)-f(x)f(y)\big|\leq \unicode[STIX]{x1D713}(x,y) & \displaystyle \nonumber\end{eqnarray}$$ for all $x,y\in \mathbb{R}$, where $\unicode[STIX]{x1D719}:\mathbb{R}\rightarrow \mathbb{R}^{+}$ is an arbitrary function and $\unicode[STIX]{x1D713}:\mathbb{R}^{2}\rightarrow \mathbb{R}^{+}$ satisfies a certain condition.
Publisher
Cambridge University Press (CUP)
Reference11 articles.
1. General stability of the exponential and Lobačevskiǐ functional equations;Chung;Bull. Aust. Math. Soc.,2016
2. The stability of the cosine equation
3. Stability of Functional Equations in Several Variables
4. The stability of the equation f (x + y) = f (x)f (y);Baker;Proc. Amer. Math. Soc.,1979
5. An answer to a question of Th. M. Rassias and J. Tabor on mixed stability of mappings;Gǎvruţǎ;Bul. St. Univ. ‘Politehnica’ Timisoara Ser. Mat. Fiz.,1997
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献