Automatic generation of short answer questions for reading comprehension assessment

Author:

HUANG YAN,HE LIANZHEN

Abstract

AbstractWriting items for reading comprehension assessment is time-consuming. Automating part of the process can help test-designers to develop assessments more efficiently and consistently. This paper presents an approach to automatically generating short answer questions for reading comprehension assessment. Our major contribution is to introduce Lexical Functional Grammar (LFG) as the linguistic framework for question generation, which enables systematic utilization of semantic and syntactic information. The approach can efficiently generate questions of better quality than previous high-performing question generation systems, and uses paraphrasing and sentence selection to improve the cognitive complexity and effectiveness of questions.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating the capability of ChatGPT for generating multiple-choice reading comprehension items;System;2024-07

2. Deep question generation model based on dual attention guidance;International Journal of Machine Learning and Cybernetics;2024-06-19

3. Exploring quality criteria and evaluation methods in automated question generation: A comprehensive survey;Education and Information Technologies;2024-06-07

4. ViQG: Web Tool for Automatic Question Generation from Code for Viva Preparation;2023 26th Conference of the Oriental COCOSDA International Committee for the Co-ordination and Standardisation of Speech Databases and Assessment Techniques (O-COCOSDA);2023-12-04

5. Evaluation of a rule-based approach to automatic factual question generation using syntactic and semantic analysis;Language Resources and Evaluation;2023-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3