Semantics-based Question Generation and Implementation

Author:

Yao Xuchen,Bouma Gosse,Zhang Yi

Abstract

This paper presents a question generation system based on the approach of semantic rewriting. The state-of-the-art deep linguistic parsing and generation tools are employed to convert (back and forth) between the natural language sentences and their meaning representations in the form of Minimal Recursion Semantics (MRS). By carefully operating on the semantic structures, we show a principled way of generating questions without ad-hoc manipulation of the syntactic structures. Based on the (partial) understanding of the sentence meaning, the system generates questions which are semantically grounded and purposeful. And with the support of deep linguistic grammars, the grammaticality of the generation results is warranted. Further, with a specialized ranking model, the linguistic realizations from the general purpose generation model are further refined for our the question generation task. The evaluation results from QGSTEC2010 show promising prospects of the proposed approach.

Publisher

University of Illinois Libraries

Subject

Linguistics and Language,Communication,Language and Linguistics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An end-to-end transformer-based model for Arabic question generation;Multimedia Tools and Applications;2024-08-01

2. A Unified Framework for Contextual and Factoid Question Generation;IEEE Transactions on Knowledge and Data Engineering;2024-01

3. Handover QG: Question Generation by Decoder Fusion and Reinforcement Learning;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

4. Does ChatGPT Spell the End of Automatic Question Generation Research?;2023 IEEE International Conference on Computer Vision and Machine Intelligence (CVMI);2023-12-10

5. Automatic Multilingual Question Generation for Health Data Using LLMs;AI-generated Content;2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3