SSL-GAN-RoBERTa: A robust semi-supervised model for detecting Anti-Asian COVID-19 hate speech on social media

Author:

Su Xuanyu,Li Yansong,Branco PaulaORCID,Inkpen DianaORCID

Abstract

Abstract Anti-Asian speech during the COVID-19 pandemic has been a serious problem with severe consequences. A hate speech wave swept social media platforms. The timely detection of Anti-Asian COVID-19-related hate speech is of utmost importance, not only to allow the application of preventive mechanisms but also to anticipate and possibly prevent other similar discriminatory situations. In this paper, we address the problem of detecting Anti-Asian COVID-19-related hate speech from social media data. Previous approaches that tackled this problem used a transformer-based model, BERT/RoBERTa, trained on the homologous annotated dataset and achieved good performance on this task. However, this requires extensive and annotated datasets with a strong connection to the topic. Both goals are difficult to meet without employing reliable, vast, and costly resources. In this paper, we propose a robust semi-supervised model, SSL-GAN-RoBERTa, that learns from a limited heterogeneous dataset and whose performance is further enhanced by using vast amounts of unlabeled data from another related domain. Compared with the RoBERTa baseline model, the experimental results show that the model has substantial performance gains in terms of Accuracy and Macro-F1 score in different scenarios that use data from different domains. Our proposed model achieves state-of-the-art performance results while efficiently using unlabeled data, showing promising applicability to other complex classification tasks where large amounts of labeled examples are difficult to obtain.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference46 articles.

1. Hate speech detection on Twitter using transfer learning

2. Racial Bias in Hate Speech and Abusive Language Detection Datasets

3. Language models are unsupervised multitask learners;Radford;OpenAI Blog,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3