Multilingual Hate Speech Detection: A Semi-Supervised Generative Adversarial Approach

Author:

Mnassri Khouloud1ORCID,Farahbakhsh Reza1ORCID,Crespi Noel1

Affiliation:

1. Samovar, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France

Abstract

Social media platforms have surpassed cultural and linguistic boundaries, thus enabling online communication worldwide. However, the expanded use of various languages has intensified the challenge of online detection of hate speech content. Despite the release of multiple Natural Language Processing (NLP) solutions implementing cutting-edge machine learning techniques, the scarcity of data, especially labeled data, remains a considerable obstacle, which further requires the use of semisupervised approaches along with Generative Artificial Intelligence (Generative AI) techniques. This paper introduces an innovative approach, a multilingual semisupervised model combining Generative Adversarial Networks (GANs) and Pretrained Language Models (PLMs), more precisely mBERT and XLM-RoBERTa. Our approach proves its effectiveness in the detection of hate speech and offensive language in Indo-European languages (in English, German, and Hindi) when employing only 20% annotated data from the HASOC2019 dataset, thereby presenting significantly high performances in each of multilingual, zero-shot crosslingual, and monolingual training scenarios. Our study provides a robust mBERT-based semisupervised GAN model (SS-GAN-mBERT) that outperformed the XLM-RoBERTa-based model (SS-GAN-XLM) and reached an average F1 score boost of 9.23% and an accuracy increase of 5.75% over the baseline semisupervised mBERT model.

Publisher

MDPI AG

Reference50 articles.

1. Language models are few-shot learners;Larochelle;Proceedings of the Advances in Neural Information Processing Systems,2020

2. Li, J., Tang, T., Zhao, W.X., Nie, J.Y., and Wen, J.R. (2022). Pretrained Language Models for Text Generation: A Survey. arXiv.

3. An Empirical Survey of Data Augmentation for Limited Data Learning in NLP;Chen;Trans. Assoc. Comput. Linguist.,2023

4. Generative ai;Feuerriegel;Bus. Inf. Syst. Eng.,2024

5. Multilingual use of Twitter: Social networks at the language frontier;Eleta;Comput. Hum. Behav.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adversarial attacks and defenses for large language models (LLMs): methods, frameworks & challenges;International Journal of Multimedia Information Retrieval;2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3