Time-averaging and postmortem skeletal survival in benthic fossil assemblages: quantitative comparisons among Holocene environments

Author:

Meldahl Keith H.,Flessa Karl W.,Cutler Alan H.

Abstract

We used radiocarbon ages on dead Holocene shells of the venerid bivalveChionespp. to investigate how time-averaging and taphonomy in shallow marine benthic assemblages vary with sedimentary and tectonic setting. We compared shells collected from the sediment surface in five depositional environments from two regions of the Gulf of California, Mexico: Bahía Concepción, a young faulted rift basin with high rates of terrigenous and carbonate sedimentation; and Bahía la Choya, an intertidal system along a sediment-starved shelf. Frequency distributions of shell ages in all environments form a hollow curve, with a mode at young ages and a long tail toward older ages. This pattern suggests that shells are added to the taphonomically active zone (TAZ) at roughly constant rates (via continuous shell deaths), and removed from the TAZ at random, either through destruction or by achieving final burial. Shell half-lives (the amount of time to remove half the shells from the TAZ) provide a comparative measure of time-averaging. Time-averaging varies with sedimentary and tectonic setting. The lowest amounts of time-averaging (shell half-lives of 90 to 165 years) occur in Bahía Concepción, where rapid rates of terrigenous sedimentation (on fan-deltas) and carbonate sedimentation (in pocket bays) bury shells rapidly. Time-averaging is higher in the sediment-starved environments of Bahía la Choya (shell half-lives of 285 to 550 years). The highest amounts of time-averaging occur the inner tidal flats of Bahía la Choya (shell half-life of 550 years). Here the conjunction of low sedimentation rates with low rates of shell destruction (due to periodic tidal emergence) permits shells to persist in the TAZ for very long time spans.There is no systematic relationship between a shell's age and its taphonomic condition (taphonomic grade) in any environment, probably because of the complex and random nature of burial-exhumation in the TAZ. Agevariancetends to increase with increasing taphonomic alteration: highly altered shells range in age from young to several thousand years old, while less altered shells are mostly young. The correspondence between time-averaging and the taphonomic condition of entire shell assemblages is also weak, but might be resolved with further study.These results provide quantitative data on time-averaging in benthic assemblages as a function of sedimentary and tectonic setting, and suggest some guidelines for facies appropriate for particular studies. Shallow marine rift basins like Bahía Concepción can potentially contain within-horizon fossil assemblages representing time spans of only a few hundred years—time resolution often beyond reach in paleontology. In contrast, sediment-starved shelf habitats like Bahía la Choya are unlikely to yield assemblages with time resolution finer than several thousands of years.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Reference61 articles.

1. Modeling Atmospheric 14C Influences and 14C Ages of Marine Samples to 10,000 BC

2. Ecology, taphonomy and paleoecology of Recent and Pleistocene molluscan faunas of Bahia la Choya, northern Gulf of California;Fürsich;Zitteliana,1991

3. Paleoecology and paleoenvironments of the Pleistocene deposits of Bahía la Choya (Gulf of California, Sonora, Mexico);Aberhan;Zitteliana,1991

4. Taphonomic Grades as a Classification for Fossiliferous Assemblages and Implications for Paleoecology

5. Microbial infestation of carbonate substrates planted on the St. Croix shelf, West Indies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3