Author:
Binding Paul,Browne Patrick J.,Turyn Lawrence
Abstract
SynopsisLet T, V1,…, Vk denote compact symmetric linear operators on a separable Hilbert space H, and write W(λ) = T + λ1V1 + … + λkVk, λ = (λ1, …, λk) ϵ ℝk. We study conditions on the conerelated to solubility of the multiparameter eigenvalue problemwith W(λ)−I nonpositive definite. The main result is as follows.Theorem. If 0 ∉ V, then (*) is soluble for any T. If 0 ∈ V, then there exists T such that (*) is insoluble.We also deduce analogous results for problems involving self-adjoint operators with compact resolvent.
Publisher
Cambridge University Press (CUP)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bounds for the spectrum of a two-parameter eigenvalue problem in a Hilbert space;Publicationes Mathematicae Debrecen;2020-01-01
2. Limit-Circle, Limit-Point Theory;Multiparameter Eigenvalue Problems;2010-12-07
3. New limit cycle bounds for digital filters;IEEE Transactions on Circuits and Systems;1988-04
4. Spectral properties of two parameter eigenvalue problems II;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;1987
5. Existence conditions for higher order eigensets of multiparameter operators;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;1986