Author:
Binding Paul,Browne Patrick J.
Abstract
SynopsisWe consider eigenvalues λ =(λ1, λ2) ∈R2 for the problem W(λ)x = 0, x ≠ 0, x ∈ H, where W(λ) = R + λ1V1 + λ2V2), and R, V1, V2 are self-adjoint operators on a separable Hilbert space H, R being bounded below with compact resolvent and V1, V2 being bounded. The i-th eigencurve Z1 is the set of eigenvalues λ, for which the i-th eigenvalue (counted according to multiplicity and in increasing order) of W(λ) vanishes. We study monotonic and asymptotic properties of Zi, and we give formulae for any asymptotes that exist. Additional results are given in the finite dimensional case.
Publisher
Cambridge University Press (CUP)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献