Author:
Galaktionov V. A.,Shishkov A. E.
Abstract
We study evolution properties of boundary blow-up for 2mth-order quasilinear parabolic equations in the case where, for homogeneous power nonlinearities, the typical asymptotic behaviour is described by exact or approximate self-similar solutions. Existence and asymptotic stability of such similarity solutions are established by energy estimates and contractivity properties of the rescaled flows.Further asymptotic results are proved for more general equations by using energy estimates related to Saint-Venant's principle. The established estimates of propagation of singularities generated by boundary blow-up regimes are shown to be sharp by comparing with various self-similar patterns.
Publisher
Cambridge University Press (CUP)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献