Author:
Ritchie Raymond J.,Larkum Anthony W.D.,Ribas Ignasi
Abstract
AbstractCould oxygenic and/or anoxygenic photosynthesis exist on planet Proxima Centauri b? Proxima Centauri (spectral type – M5.5 V, 3050 K) is a red dwarf, whereas the Sun is type G2 V (5780 K). The light regimes on Earth and Proxima Centauri b are compared with estimates of the planet's suitability for Chlorophylla(Chla) and Chld-based oxygenic photosynthesis and for bacteriochlorophyll (BChl)-based anoxygenic photosynthesis. Proxima Centauri b has low irradiance in the oxygenic photosynthesis range (400–749 nm: 64–132 µmol quanta m−2s−1). Much larger amounts of light would be available for BChl-based anoxygenic photosynthesis (350–1100 nm: 724–1538 µmol quanta m−2s−1). We estimated primary production under these light regimes. We used the oxygenic algaeSynechocystisPCC6803,Prochlorothrix hollandica,Acaryochloris marina,Chlorella vulgaris,Rhodomonassp. andPhaeodactylum tricornutumand the anoxygenic photosynthetic bacteriaRhodopseudomonas palustris(BChla),Afifella marina(BChla),Thermochromatium tepidum(BChla),Chlorobaculum tepidum(BChla + c) andBlastochloris viridis(BChlb) as representative photosynthetic organisms. Proxima Centauri b has only ≈3% of the PAR (400–700 nm) of Earth irradiance, but we found that potential gross photosynthesis (Pg) on Proxima Centauri b could be surprisingly high (oxygenic photosynthesis: earth ≈0.8 gC m−2h−1; Proxima Centauri b ≈0.14 gC m−2h−1). The proportion of PAR irradiance useable by oxygenic photosynthetic organisms (the sum of Blue + Red irradiance) is similar for the Earth and Proxima Centauri b. The oxygenic photic zone would be only ≈10 m deep in water compared with ≈200 m on Earth. ThePgof an anoxic Earth (gC m−2h−1) is ≈0.34–0.59 (land) and could be as high as ≈0.29–0.44 on Proxima Centauri b. 1 m of water does not affect oxygenic or anoxygenic photosynthesis on Earth, but on Proxima Centauri b oxygenicPgis reduced by ≈50%. Effective elimination of near IR limitsPgby photosynthetic bacteria (<10% of the surface value). The spectrum of Proxima Centauri b is unfavourable for anoxygenic aquatic photosynthesis. Nevertheless, a substantial aerobic or anaerobic ecology is possible on Proxima Centauri b. Protocols to recognize the biogenic signature of anoxygenic photosynthesis are needed.
Publisher
Cambridge University Press (CUP)
Subject
Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献