Growth and Photosynthetic Efficiency of Microalgae and Plants with Different Levels of Complexity Exposed to a Simulated M-Dwarf Starlight

Author:

Battistuzzi Mariano123ORCID,Cocola Lorenzo1ORCID,Liistro Elisabetta2,Claudi Riccardo45ORCID,Poletto Luca1,La Rocca Nicoletta23ORCID

Affiliation:

1. National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), 35131 Padua, Italy

2. Department of Biology, University of Padua, 35121 Padua, Italy

3. Center for Space Studies and Activities (CISAS), University of Padua, 35131 Padua, Italy

4. National Institute for Astrophysics (INAF), Astronomical Observatory of Padua, 35122 Padua, Italy

5. Department of Mathematics and Physics, University Roma Tre, 00146 Rome, Italy

Abstract

Oxygenic photosynthetic organisms (OPOs) are primary producers on Earth and generate surface and atmospheric biosignatures, making them ideal targets to search for life from remote on Earth-like exoplanets orbiting stars different from the Sun, such as M-dwarfs. These stars emit very low light in the visible and most light in the far-red, an issue for OPOs, which mostly utilize visible light to photosynthesize and grow. After successfully testing procaryotic OPOs (cyanobacteria) under a simulated M-dwarf star spectrum (M7, 365–850 nm) generated through a custom-made lamp, we tested several eukaryotic OPOs: microalgae (Dixoniella giordanoi, Microchloropsis gaditana, Chromera velia, Chlorella vulgaris), a non-vascular plant (Physcomitrium patens), and a vascular plant (Arabidopsis thaliana). We assessed their growth and photosynthetic efficiency under three light conditions: M7, solar (SOL) simulated spectra, and far-red light (FR). Microalgae grew similarly in SOL and M7, while the moss P. patens showed slower growth in M7 with respect to SOL. A. thaliana grew similarly in SOL and M7, showing traits typical of shade-avoidance syndrome. Overall, the synergistic effect of visible and far-red light, also known as the Emerson enhancing effect, could explain the growth in M7 for all organisms. These results lead to reconsidering the possibility and capability of the growth of OPOs and are promising for finding biosignatures on exoplanets orbiting the habitable zone of distant stars.

Funder

Italian Space Agency

Department of Biology of the University of Padova

Institute for Photonics and Nanotechnologies of CNR

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3