Abstract
ABSTRACT:Background:The Passive Surveillance Stroke Severity (PaSSV) Indicator was derived to estimate stroke severity from variables in administrative datasets but has not been externally validated.Methods:We used linked administrative datasets to identify patients with first hospitalization for acute stroke between 2007-2018 in Alberta, Canada. We used the PaSSV indicator to estimate stroke severity. We used Cox proportional hazard models and evaluated the change in hazard ratios and model discrimination for 30-day and 1-year case fatality with and without PaSSV. Similar comparisons were made for 90-day home time thresholds using logistic regression. We also linked with a clinical registry to obtain National Institutes of Health Stroke Scale (NIHSS) and compared estimates from models without stroke severity, with PaSSV, and with NIHSS.Results:There were 28,672 patients with acute stroke in the full sample. In comparison to no stroke severity, addition of PaSSV to the 30-day case fatality models resulted in improvement in model discrimination (C-statistic 0.72 [95%CI 0.71–0.73] to 0.80 [0.79–0.80]). After adjustment for PaSSV, admission to a comprehensive stroke center was associated with lower 30-day case fatality (adjusted hazard ratio changed from 1.03 [0.96–1.10] to 0.72 [0.67–0.77]). In the registry sample (N = 1328), model discrimination for 30-day case fatality improved with the inclusion of stroke severity. Results were similar for 1-year case fatality and home time outcomes.Conclusion:Addition of PaSSV improved model discrimination for case fatality and home time outcomes. The validity of PASSV in two Canadian provinces suggests that it is a useful tool for baseline risk adjustment in acute stroke.
Publisher
Cambridge University Press (CUP)
Subject
Neurology (clinical),Neurology,General Medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献