Applying Engineering Design Ontology for Content Analysis of Team Conceptual Design Activity

Author:

Martinec Tomislav,Škec Stanko,Šklebar Jelena,Štorga Mario

Abstract

AbstractStudies of design activity have been dominantly reporting on different aspects of the design process, rather than the content of designing. The aim of the presented research has been the development and application of an approach for a fine-grain analysis of the design content communicated between designers during the team conceptual design activities. The proposed approach builds on an engineering design ontology as a foundation for the content categorisation. Two teams have been studied using the protocol analysis method. The coded protocols offered fine-grain descriptions of the content communicated at different points in the design session and enabled comparison of teams’ approaches and deriving some generalisable findings. For example, it has been shown that both teams focused primarily on the use of the developed product and the operands within the technical process, in order to generate new technical solutions and initial component design. Moreover, teams exhibit progress from abstract to concrete solutions as the sessions proceeded and focused on the functional requirements towards the end of the sessions.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Reference32 articles.

1. Making sense of engineering design review activities

2. Conceptual Design

3. Standardized observation of team-work in design

4. Exploring problem decomposition in conceptual design among novice designers

5. Pourmohamadi M. and Gero J.S . (2011), “LINKOgrapher: An Analysis Tool to Study Design Protocols Based on FBS Coding Scheme”, 18th International Conference on Engineering Design (ICED 11), Lyngby/Copenhagen, Denmark, August 15-19, pp. 294–303.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3