Author:
Caron François,Panero Francesca,Rousseau Judith
Abstract
AbstractThis paper investigates properties of the class of graphs based on exchangeable point processes. We provide asymptotic expressions for the number of edges, number of nodes, and degree distributions, identifying four regimes: (i) a dense regime, (ii) a sparse, almost dense regime, (iii) a sparse regime with power-law behaviour, and (iv) an almost extremely sparse regime. We show that, under mild assumptions, both the global and local clustering coefficients converge to constants which may or may not be the same. We also derive a central limit theorem for subgraph counts and for the number of nodes. Finally, we propose a class of models within this framework where one can separately control the latent structure and the global sparsity/power-law properties of the graph.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Reference41 articles.
1. Rate-optimal graphon estimation
2. [26] Lloyd, J. , Orbanz, P. , Ghahramani, Z. and Roy, D. (2012). Random function priors for exchangeable arrays with applications to graphs and relational data. In NIPS’12: Proceedings of the 25th International Conference on Neural Information Processing Systems, Association for Computing Machinery, New York, pp. 998–1006.
3. Sampling perspectives on sparse exchangeable graphs
4. Central limit theorems for $U$-statistics of Poisson point processes
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献