Author:
Snook Braden,Butler Jason E.,Guazzelli Élisabeth
Abstract
The large-amplitude oscillatory flow of a suspension of spherical particles in a pipe is studied at low Reynolds number. Particle volume fraction and velocity are examined through refractive index matching techniques. The particles migrate toward the centre of the pipe, i.e. toward regions of lower shear rate, for bulk volume fractions larger than 10 %. Steady results are in agreement with available experimental results and discrete-particle simulations for similar geometries. The dynamics of the shear-induced migration process are analysed and compared against the predictions of the suspension balance model using realistic rheological laws.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献