Viscosity Modeling for Blood and Blood Analog Fluids in Narrow Gap and High Reynolds Numbers Flows

Author:

Knüppel Finn1ORCID,Malchow Sasha1,Sun Ang2ORCID,Hussong Jeanette2ORCID,Hartmann Alexander3ORCID,Wurm Frank-Hendrik1,Torner Benjamin1ORCID

Affiliation:

1. Institute of Turbomachinery, Faculty for Mechanical Engineering and Ship Design, University of Rostock, 18059 Rostock, Germany

2. Institute for Fluid Mechanics and Aerodynamics, Technical University of Darmstadt, 64287 Darmstadt, Germany

3. Institute of Clinical Chemistry and Laboratory Medicine, Rostock University Medical Center, 18057 Rostock, Germany

Abstract

For the optimization of ventricular assist devices (VADs), flow simulations are crucial. Typically, these simulations assume single-phase flow to represent blood flow. However, blood consists of plasma and blood cells, making it a multiphase flow. Cell migration in such flows leads to a heterogeneous cell distribution, significantly impacting flow dynamics, especially in narrow gaps of less than 300 μm found in VADs. In these areas, cells migrate away from the walls, forming a cell-free layer, a phenomenon not usually considered in current VAD simulations. This paper addresses this gap by introducing a viscosity model that accounts for cell migration in microchannels under VAD-relevant conditions. The model is based on local particle distributions measured in a microchannels with a blood analog fluid. We developed a local viscosity distribution for flows with particles/cells and a cell-free layer, applicable to both blood and analog fluids, with particle volume fractions of up to 5%, gap heights of 150 μm, and Reynolds numbers around 100. The model was validated by comparing simulation results with experimental data of blood and blood analog fluid flow on wall shear stresses and pressure losses, showing strong agreement. This model improves the accuracy of simulations by considering local viscosity changes rather than assuming a single-phase fluid. Future developments will extend the model to physiological volume fractions up to 40%.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Reference32 articles.

1. Shaping Europe’s Digital Future (2023, October 24). Improved Treatment for Patients with Advanced Heart Failure. Available online: https://digital-strategy.ec.europa.eu/en/news/improved-treatment-patients-advanced-heart-failure.

2. (2023, October 23). Eurotransplant Yearly Statistics Overview 2022. Available online: https://statistics.eurotransplant.org/index.php?search_type=overview&search_text=9023.

3. Ventricular assist devices today and tomorrow;Thunberg;J. Cardiothorac. Vasc. Anesth.,2010

4. Perschall, M. (2010). Numerische Untersuchung des Wellenpumpenkonzeptes und der Mechanischen Herzunterstützung. [Ph.D. Thesis, Karlsruher Institut für Technologie Fakultät für Maschinenbau].

5. Blood damage in ventricular assist devices;Thamsen;Int. J. Artif. Organs,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3