Author:
Brinkerhoff Joshua R.,Yaras Metin I.
Abstract
Laminar-to-turbulent transition of a boundary layer subjected to streamwise pressure gradients and elevated free stream turbulence is computed through direct numerical simulation. The streamwise pressure distribution and elevated free stream turbulence levels mimic the conditions present on the suction side of highly-cambered airfoils. Longitudinal streamwise streaks form in the laminar boundary layer through the selective inclusion of low-frequency disturbances from the free stream turbulence. The spanwise spacing normalized by local inner variables indicates stabilization of the streaks occurs by the favourable pressure gradient and prevents the development of secondary streak instability modes until downstream of the suction peak. Two distinct processes are found to trigger transition to turbulence in the adverse pressure gradient region of the flow. One involves the development of varicose secondary instability of individual low-speed streaks that results in their breakdown and the formation and growth of discrete turbulent spots. The other involves a rapid amplification of free stream disturbances in the inflectional boundary layer in the adverse pressure gradient region that results in a largely homogeneous breakdown to turbulence across the span. The effect of high-frequency free stream disturbances on the streak secondary instability and on the nonlinear processes within the growing turbulent spot are analysed through the inviscid transport of instantaneous vorticity. The results suggest that free stream turbulence contributes to the growth of the turbulent spot by generating large strain rates that activate vortex-stretching and tilting processes within the spot.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献