Vortex breakdown of compressible subsonic swirling flows in a finite-length straight circular pipe

Author:

Rusak Zvi,Choi Jung J.,Bourquard Nicholas,Wang Shixiao

Abstract

A global analysis of steady states of inviscid compressible subsonic swirling flows in a finite-length straight circular pipe is developed. A nonlinear partial differential equation for the solution of the flow stream function is derived in terms of the inlet flow specific total enthalpy, specific entropy and circulation functions. The equation reflects the complicated thermo–physical interactions in the flows. Several types of solutions of the resulting nonlinear ordinary differential equation for the columnar case together with a flow force condition describe the outlet state of the flow in the pipe. These solutions are used to form the bifurcation diagram of steady compressible flows with swirl as the inlet swirl level is increased at a fixed inlet Mach number. The approach is applied to two profiles of inlet flows, solid-body rotation and the Lamb–Oseen vortex, both with a uniform axial velocity and temperature. The computed results provide for each inlet flow profile theoretical predictions of the critical swirl levels for the appearance of vortex breakdown states as a function of the inlet Mach number, suggesting that the results are robust for a variety of inlet swirling flows. The analysis sheds light on the dynamics of compressible flows with swirl and vortex breakdown, and shows the delay in the appearance of breakdown with increase of the inlet axial flow Mach number in the subsonic range of operation. The present theory is limited to axisymmetric dynamics of swirling flows in pipes where the wall boundary layer is thin and attached and does not interact with the flow in the bulk.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3