Influence of swirl on the supersonic wake flow structure behind blunt-based axisymmetric afterbodies

Author:

Weidner S.ORCID,Hruschka R.,Leopold F.

Abstract

Wind-tunnel experiments have been conducted on cylindrical models with canted fins. The fins introduced a swirling motion into the wake downstream of a blunt-based afterbody aligned with a Mach 2 flow. Measurements of the velocity field downstream of the models and the pressure distribution at the model base show evidence of two wake flow patterns distinctively differing from the classical supersonic wake, depending on the degree of rotation introduced. For a fin-cant angle of 16$^\circ$, a rotating wake flow with a central, downstream-directed vortex tube and a concentric, counter-rotating, toric vortex pair forms. A higher fin-cant angle of 32$^\circ$, in turn, results in a swirling flow surrounding a region of low-momentum flow at the axis. Near the central axis of the flow field an upstream flow establishes, extending from the far wake up to the model base. Numerical simulations have been performed to explain the fluid-dynamic processes and the origins of the experimentally observed structural changes of the rotating wakes. The results of the large-scale-turbulence-resolving simulations agree qualitatively well with the measured flow fields. The numerical results show that the centrifugal forces decrease the base pressure and cause the experimentally observed structural changes in the wake.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference77 articles.

1. Weidner, S. 2020 Einfluss des Drall auf den Überschallnachlauf eines längsangeströmten zylindrischen Körpers. PhD thesis, Karlsruhe Institute of Technology, Schriftenreihe des Instituts für Strömungsmechanik.

2. Numerical investigation of transitional supersonic axisymmetric wakes

3. COMPARISION OF NUMERICAL SCHEMES IN LARGE-EDDY SIMULATION OF THE TEMPORAL MIXING LAYER

4. Vortex breakdown of compressible subsonic swirling flows in a finite-length straight circular pipe

5. Skin friction and velocity profile family for compressible turbulentboundary layers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3