Aspect-ratio effects on rotating wings: circulation and forces

Author:

Carr Zakery R.,DeVoria Adam C.,Ringuette Matthew J.

Abstract

AbstractWe employ experiments to study aspect ratio ($\def\AR{A\mkern-8muR}\AR$) effects on the vortex structure, circulation and lift force for flat-plate wings rotating from rest at 45° angle of attack, which represents a simplified hovering-wing half-stroke. We use the time-varying, volumetric $\AR =2$ data of Carr et al. (Exp. Fluids, vol. 54, 2013, pp. 1–26), reconstructed from phase-locked, phase-averaged stereoscopic digital particle image velocimetry (S-DPIV), and an $\AR =4$ volumetric data set matching the span-based Reynolds number ($\mathit{Re}$) of $\AR =2$. For $\AR =1{-}4$ and $\mathit{Re}_{\mathit{span}}$ of $O$($10^{3}$$10^{4}$), we directly measure the lift force. The total leading-edge-region circulation for $\AR =2$ and 4 compares best overall using a span-based normalization and for matching rotation angles. The total circulation increases across the span to the tip region, and is larger for $\AR =2$. After the startup, the total circulation for each $\AR$ has a similar slope and a slow growth. The first leading-edge vortex (LEV) and the tip vortex (TV) for $\AR =4$ move past the trailing edge, followed by substantial breakdown. For $\AR =2$ the outboard, aft-tilted LEV merges with the TV and resides over the tip, although breakdown also occurs. Where the LEV is ‘stable’ inboard, its circulation saturates for $\AR =2$ and the growth slows for $\AR =4$. Aft LEV tilting reduces the spanwise LEV circulation for each $\AR$. Both positive and negative axial flow are found in the first LEV for $\AR =2$ and 4, with the positive component being somewhat larger. This yields a generally positive (outboard) average vorticity flux. The average lift coefficient is essentially constant with $\AR$ from 1 to 4 during the slow growth phase, although the large-time behaviour shows a slight decrease in lift coefficient with increasing $\AR$. The S-DPIV data are used to obtain the lift impulse and the spanwise and streamwise components contributing to the lift coefficient. The spanwise contribution is similar for $\AR =2$ and 4, due to similar trailing-edge vortex interactions, LEV saturation behaviour and total circulation slopes. However, for $\AR =2$ the streamwise contribution is much larger, because of the stronger, coherent TV and aft-tilted LEV, which will create a relatively lower-pressure region over the tip.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3