Author:
Singh Ravi,Bandi M. M.,Mahadevan Amala,Mandre Shreyas
Abstract
The onset of monami – the synchronous waving of seagrass beds driven by a steady flow – is modelled as a linear instability of the flow. Unlike previous works, our model considers the drag exerted by the grass in establishing the steady flow profile, and in damping out perturbations to it. We find two distinct modes of instability, which we label modes 1 and 2. Mode 1 is closely related to Kelvin–Helmholtz instability modified by vegetation drag, whereas mode 2 is unrelated to Kelvin–Helmholtz instability and arises from an interaction between the flow in the vegetated and unvegetated layers. The vegetation damping, according to our model, leads to a finite threshold flow for both of these modes. Experimental observations for the onset and frequency of waving compare well with model predictions for the instability onset criteria and the imaginary part of the complex growth rate respectively, but experiments lie in a parameter regime where the two modes can not be distinguished.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献