Abstract
Submerged vegetation plays a subtle role in exchanging the fluid mass and energy in the vegetated flow zone, where the swaying motions of flexible plants are the important source of turbulent kinetic energy production. Flume experiments were conducted to study the modes, characteristics and factors of swaying of individual submerged flexible plants. A modified plant model in a new form, representing the highly flexible vegetation with clustered leaves, was employed. A ‘rigid-like’ synchronous swaying mode and a ‘whip-like’ asynchronous flapping mode are found to appear alternately for the individual plants. The interaction between these modes depends on the resulting local flow structure affected by the plants. Compared with a plant in isolation with the same flow Reynolds number, the swaying motions of a plant within the vegetation patch are less frequent but more prone to the synchronous mode. The eigen frequency of the motions increases linearly with an increase in flow Reynolds number in the range of 2 × 104–5 × 104, but the normalised amplitude reaches a saturation at a high flow Reynolds number. Moreover, the in-line and spanwise motions have a 2 : 1 frequency ratio for an ‘8’ shaped trajectory on the horizontal plane and a 1 : 1 ratio for a ‘0’ shaped circular trajectory, or a combination of both.
Funder
National Natural Science Foundation of China
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献