Author:
Maklakov Dmitri V.,Petrov Alexander G.
Abstract
In this work we have obtained exact analytical formulae expressing the wave resistance of a two-dimensional body by the parameters of the downstream non-breaking waves. The body moves horizontally at a constant speed $c$ in a channel of finite depth $h$. We have analysed the relationships between the parameters of the upstream flow and the downstream waves. Making use of some results by Keady & Norbury (J. Fluid Mech., vol. 70, 1975, pp. 663–671) and Benjamin (J. Fluid Mech., vol. 295, 1995, pp. 337–356), we have rigorously proved that realistic steady free-surface flows with a positive wave resistance exist only if the upstream flow is subcritical, i.e. the Froude number $\mathit{Fr}=c/\sqrt{gh}<1$. For all solutions with downstream waves obtained by a perturbation of a supercritical upstream uniform flow the wave resistance is negative. Applying a numerical technique, we have calculated accurate values of the wave resistance depending on the wavelength, amplitude and mean depth.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献