Theory of the almost-highest wave. Part 2. Matching and analytic extension

Author:

Longuet-Higgins M. S.,Fox M. J. H.

Abstract

Most methods of calculating steep gravity waves (of less than the maximum height) encounter difficulties when the radius of curvature R at the crest becomes small compared with the wavelength L, or some other typical length scale. This paper describes a new method of calculation valid when R/L is small.For deep-water waves, a parameter ε is defined as equal to q/2½c0, where q is the particle speed at the wave crest, in a frame of reference moving with the phase speed c. Hence ε is of order (R/L)½. Three zones are distinguished: (1) an inner zone of linear dimensions ε2L near the crest, where the flow is described by the inner solution found previously by Longuet-Higgins & Fox (1977); (2) an outer zone of dimensions O(L) where the flow is given by a perturbed form of Michell's solution for the highest wave; and (3) a matching zone of width O(L). The matching procedure involves complex powers of ε.The resulting expression for the square of the phase velocity is found to be \[ c^2 = (g/k)\{1.1931-1.18\epsilon^3\cos(2.143\ln \epsilon + 2.22)\} \] (see figures 5a, b), which is in remarkable agreement with independent calculations based on high-order series. In particular, the existence of turning-points in the phase velocity as a function of wave height is confirmed.Similar expressions, valid to order ε3, are found for the wave height, the potential and kinetic energies and the momentum flux or impulse of the wave.The velocity field is extended analytically across the free surface, revealing the existence of branch-points of order ½, as predicted by Grant (1973).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3