The trapping in high-shear regions of slender bacteria undergoing chemotaxis in a channel

Author:

Bearon R. N.,Hazel A. L.

Abstract

Recently published experimental observations of slender bacteria swimming in channel flow demonstrate that the bacteria become trapped in regions of high shear, leading to reduced concentrations near the channel’s centreline. However, the commonly used advection–diffusion equation, formulated in macroscopic space variables and originally derived for unbounded homogeneous shear flow, predicts that the concentration of bacteria is uniform across the channel in the absence of chemotactic bias. In this paper, we instead use a Smoluchowski equation to describe the probability distribution of the bacteria, in macroscopic (physical) and microscopic (orientation) space variables. We demonstrate that the Smoluchowski equation is able to predict the trapping phenomena and compare the full numerical solution of the Smoluchowski equation with experimental results when there is no chemotactic bias and also in the presence of a uniform cross-channel chemotactic gradient. Moreover, a simple analytic approximation for the equilibrium distribution provides an excellent approximate solution for slender bacteria, suggesting that the dominant effect on equilibrium behaviour is flow-induced modification of the bacteria’s swimming direction. A continuum framework is thus provided to explain how the equilibrium distribution of slender chemotactic bacteria is altered in the presence of spatially varying shear flow. In particular, we demonstrate that while advection is an appropriate description of transport due to the mean swimming velocity, the random reorientation mechanism of the bacteria cannot be simply modelled as diffusion in physical space.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3