Dispersion of a gyrotactic micro-organism suspension in a vertical pipe: the buoyancy–flow coupling effect

Author:

Wang BohanORCID,Jiang WeiquanORCID,Chen GuoqianORCID

Abstract

Understanding the transport of micro-organisms in pipes is crucial to many fundamental problems, such as bioconvection and biodiesel production. In this work, we investigate the velocity profile and dispersion of a suspension of negatively buoyant, gyrotactic micro-organisms in a vertical pipe. With an imposed flow rate, the non-uniform radial cell concentration typical of gyrotaxis distorts the simple Poiseuille flow through inhomogeneous buoyancy, which in turn affects the cell concentration distribution. By solving the fundamental Smoluchowski equation and the Navier–Stokes equation simultaneously, we account for this bidirectional buoyancy–flow coupling effect. Asymptotic dispersion coefficients, namely, drift velocity and dispersivity, are further calculated with the obtained radial velocity and cell concentration profiles, which are assumed to be steady, symmetric and axially invariant. Using the gyrotactic micro-organism Chlamydomonas augustae as an example, detailed results are given to illustrate the effect of buoyancy–flow coupling. In downwelling flows, the buoyancy–flow coupling effect intensifies with the Richardson number $Ri$ quantifying the mean cell concentration, but is strongest at a moderate flow strength. The buoyancy–flow coupling effect significantly enhances the velocity and cell concentration in the central region, as well as the drift velocity and dispersivity. In contrast, the buoyancy–flow coupling effect is comparatively limited in upwelling flows, due to the dominant influence of the no-slip boundary condition imposed at the wall. Comparisons with predictions of existing approximate models are also presented.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3