Abstract
By using and extending earlier results (Liu & Ricca,J. Phys. A, vol. 45, 2012, 205501), we derive the skein relations of the HOMFLYPT polynomial for ideal fluid knots from helicity, thus providing a rigorous proof that the HOMFLYPT polynomial is a new, powerful invariant of topological fluid mechanics. Since this invariant is a two-variable polynomial, the skein relations are derived from two independent equations expressed in terms of writhe and twist contributions. Writhe is given by addition/subtraction of imaginary local paths, and twist by Dehn’s surgery. HOMFLYPT then becomes a function of knot topology and field strength. For illustration we derive explicit expressions for some elementary cases and apply these results to homogeneous vortex tangles. By examining some particular examples we show how numerical implementation of the HOMFLYPT polynomial can provide new insight into fluid-mechanical behaviour of real fluid flows.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献