Author:
Maleki A.,Hormozi S.,Roustaei A.,Frigaard I. A.
Abstract
Viscoplastic fluids do not flow unless they are sufficiently stressed. This property can be exploited in order to produce novel flow features. One example of such flows is viscoplastically lubricated (VPL) flow, in which a viscoplastic fluid is used to stabilize the interface in a multi-layer flow, far beyond what might be expected for a typical viscous–viscous interface. Here we extend this idea by considering the encapsulation of droplets within a viscoplastic fluid, for the purpose of transportation, e.g. in pipelines. The main advantage of this method, compared to others that involve capillary forces is that significantly larger droplets may be stably encapsulated, governed by the length scale of the flow and yield stress of the encapsulating fluid. We explore this set-up both analytically and computationally. We show that sufficiently small droplets are held in the unyielded plug of a Poiseuille flow (pipe or plane channel). As the length or radius of the droplets increases, the carrier fluid eventually yields, potentially breaking the encapsulation. We study this process of breaking and give estimates for the limiting size of droplets that can be encapsulated.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献