Entry, start up and stability effects in visco-plastically lubricated pipe flows

Author:

HORMOZI S.,WIELAGE-BURCHARD K.,FRIGAARD I. A.

Abstract

Interfacial instabilities of multi-layer shear flows may be eliminated by astute positioning of yield stress fluid layers that remain unyielded at the interface(s). We study the initiation, development lengths and temporal stability of such flows in the setting of a Newtonian core fluid surrounded by a Bingham lubricated fluid, within a pipe. Flow initiation is effected by starting the flow with a pipe full of stationary Bingham fluid and injecting both inner and outer fluids simultaneously. Initial instability and dispersive mixing at the front remains localised and is advected from the pipe leaving behind a stable multi-layer configuration, found for moderate Reynolds numbers (Re), for a broad range of interface radii (ri) and for different inlet diameters (Ri), whenever the base flow parameters admit a multi-layer flow with unyielded interface. The established flows have three distinct entry lengths. These relate to: (i) establishment of the first unyielded plug close to the interface (shortest); (ii) establishment of the interface radius; (iii) establishment of the velocity profile (longest). The three entry lengths increase with Re and decrease with both the Bingham number (B) and the viscosity ratio (m). Nonlinear temporal stability to axisymmetric perturbations is studied numerically, considering initial perturbations that are either localised in yielded parts of the flow or that initially break the unyielded plug regions. The aim is to understand structural aspects of the flow stability, not easily extracted from the energy stability results of Moyers-Gonzalez, Frigaard & Nouar (J. Fluid Mech., vol. 506, 2004, p. 117). The initial stages of a stable perturbed flow are characterised by a very rapid decay of the perturbation kinetic energy during which time the unyielded plug reforms (or breaks and reforms). This is followed by slower exponential decay on a viscous timescale (t ~ Re). For smaller Re and moderate initial amplitudes A, the perturbations decay to the numerical tolerance. As either Re or A is increased sufficiently, a number of interesting phenomena arise. The amount of dispersion increases, making the interfacial region increasingly diffuse and limiting the final decay. At larger Re or A, we find secondary flow structures that persist. A first example of these is when the shear stress decays below the yield stress before the velocity perturbation has decayed, leading to freezing in of the interface shape. This can lead to flows with a rigid wavy interface. Secondly, depending on the core fluid radius and thickness of the surrounding plug region, we may observe a range of dispersive structures akin to the pearls and mushrooms of d'Olce et al. (Phys. Fluids, vol. 20, 2008, art. 024104).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3