Heat-flux enhancement by vapour-bubble nucleation in Rayleigh–Bénard turbulence

Author:

Narezo Guzman Daniela,Xie Yanbo,Chen Songyue,Fernandez Rivas David,Sun Chao,Lohse Detlef,Ahlers Guenter

Abstract

We report on the enhancement of turbulent convective heat transport due to vapour-bubble nucleation at the bottom plate of a cylindrical Rayleigh–Bénard sample (aspect ratio 1.00, diameter 8.8 cm) filled with liquid. Microcavities acted as nucleation sites, allowing for well-controlled bubble nucleation. Only the central part of the bottom plate with a triangular array of microcavities (etched over an area with diameter of 2.5 cm) was heated. We studied the influence of the cavity density and of the superheat $T_{b}-T_{on}$ ($T_{b}$ is the bottom-plate temperature and $T_{on}$ is the value of $T_{b}$ below which no nucleation occurred). The effective thermal conductivity, as expressed by the Nusselt number $\mathit{Nu}$, was measured as a function of the superheat by varying $T_{b}$ and keeping a fixed difference $T_{b}-T_{t}\simeq 16$  K ($T_{t}$ is the top-plate temperature). Initially $T_{b}$ was much larger than $T_{on}$ (large superheat), and the cavities vigorously nucleated vapour bubbles, resulting in two-phase flow. Reducing $T_{b}$ in steps until it was below $T_{on}$ resulted in cavity deactivation, i.e. in one-phase flow. Once all cavities were inactive, $T_{b}$ was increased again, but they did not reactivate. This led to one-phase flow for positive superheat. The heat transport of both one- and two-phase flow under nominally the same thermal forcing and degree of superheat was measured. The Nusselt number of the two-phase flow was enhanced relative to the one-phase system by an amount that increased with increasing $T_{b}$. Varying the cavity density (69, 32, 3.2, 1.2 and $0.3~\text{mm}^{-2}$) had only a small effect on the global $\mathit{Nu}$ enhancement; it was found that $\mathit{Nu}$ per active site decreased as the cavity density increased. The heat-flux enhancement of an isolated nucleating site was found to be limited by the rate at which the cavity could generate bubbles. Local bulk temperatures of one- and two-phase flows were measured at two positions along the vertical centreline. Bubbles increased the liquid temperature (compared to one-phase flow) as they rose. The increase was correlated with the heat-flux enhancement. The temperature fluctuations, as well as local thermal gradients, were reduced (relative to one-phase flow) by the vapour bubbles. Blocking the large-scale circulation around the nucleating area, as well as increasing the effective buoyancy of the two-phase flow by thermally isolating the liquid column above the heated area, increased the heat-flux enhancement.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3