Wave adjustment: general concept and examples

Author:

Reznik G. M.

Abstract

We formulate a general theory of wave adjustment applicable to any physical system (not necessarily a hydrodynamic one), which, being linearized, possesses linear invariants and a complete system of waves harmonically depending on the time $t$. The invariants are determined by the initial conditions and are zero for the waves, which, therefore, do not transport and affect the invariants. The evolution of such a system can be represented naturally as the sum of a stationary component with non-zero invariants and a non-steady wave part with zero invariants. If the linear system is disturbed by a small perturbation (linear or nonlinear), then the state vector of the system is split into slow balanced and fast wave components. Various scenarios of the wave adjustment are demonstrated with fairly simple hydrodynamic models. The simplest scenario, called ‘fast radiation’, takes place when the waves rapidly (their group speed $c_{gr}$ greatly exceeds the slow flow velocity $U$) radiate away from the initial perturbation and do not interact effectively with the slow component. As a result, at large times, after the waves propagate away, the residual flow is slow and described by a balanced model. The scenario is exemplified by the three-dimensional non-rotating barotropic flow with a free surface. A more complicated scenario, called ‘nonlinear trapping’, occurs if oscillations with small group speed $c_{gr}\leqslant U$ are present in the wave spectrum. In this case, after nonlinear wave adjustment, the state vector is a superposition of the slow balanced component and oscillations with small $c_{gr}$ trapped by this component. An example of this situation is the geostrophic adjustment of a three-dimensional rotating barotropic layer with a free surface. In the third scenario, called ‘incomplete splitting’, the wave adjustment is accompanied by non-stationary boundary layers arising near rigid and internal boundaries at large times. The thickness of such a layer tends to zero and cross-gradients of physical parameters in the layer tend to infinity as $t\rightarrow \infty$. The layer is an infinite number of wave modes whose group speed tends to zero as the mode number tends to infinity. In such a system, complete splitting of motion into fast and slow components is impossible even in the linear approximation. The scenario is illustrated by an example of stratified non-rotating flow between two rigid lids. The above scenarios describe, at least, the majority of known cases of wave adjustment.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Upscale transfer of waves in one-dimensional rotating shallow water;Journal of Fluid Mechanics;2023-04-14

2. Multi-scale Methods for Geophysical Flows;Mathematics of Planet Earth;2019

3. Geostrophic Adjustment Beyond the Traditional Approximation;The Ocean in Motion;2018

4. Wave boundary layers in a stratified fluid;Journal of Fluid Mechanics;2017-11-07

5. The fate of pancake vortices;Physics of Fluids;2017-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3