Wave boundary layers in a stratified fluid

Author:

Reznik G. M.ORCID

Abstract

We study so-called wave boundary layers (BLs) arising in a stably stratified fluid at large times. The BL is a narrow domain near the surface and/or bottom of the fluid; with increasing time, gradients of buoyancy and horizontal velocity in the BL grow sharply and the BL thickness tends to zero. The non-stationary BL can arise both as a result of linear evolution of the initial perturbation and under the action of an external force (tangential stress exerted on the fluid surface in our case). We analyse both the variants and find that the ‘forced’ BLs are much more intense than the ‘free’ ones. In the ‘free’ BLs all fields are bounded and the gradients of buoyancy and horizontal velocity grow linearly in time, whereas in the ‘forced’ BL only the vertical velocity is bounded and the buoyancy and horizontal velocity grow linearly in time. As to the gradients in the ‘forced’ BL, the vertical velocity gradient grows in time linearly and the gradients of buoyancy and horizontal velocity grow quadratically. In both of the cases we determine exact solutions in the form of expansions in the vertical wave modes and find asymptotic solutions valid at large times. The comparison between them shows that the asymptotic solutions approximate the exact ones fairly well even for moderate times.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference14 articles.

1. Perturbation Methods in Applied Mathematics

2. Asymptotic properties of a solution of a boundary-value problem;Il’in;Math. Notes,1970

3. Dynamic response of the Indian Ocean to onset of the Southwest Monsoon

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3