Oscillatory motion and wake of a bubble rising in a thin-gap cell

Author:

Filella Audrey,Ern Patricia,Roig Véronique

Abstract

We investigate the characteristics of the oscillatory motion and wake of confined bubbles freely rising in a thin-gap cell ($h=3.1~\text{mm}$ width). Once the diameter $d$ of the bubble in the plane of the cell is known, the mean vertical velocity of the bubble $V_{b}$ is proportional to the gravitational velocity $(h/d)^{1/6}\sqrt{gd}$, where $g$ is the gravitational acceleration. This velocity is used to build the Reynolds number $Re=V_{b}d/{\it\nu}$ that characterizes the flow induced by the bubble in the surrounding liquid (of kinematic viscosity ${\it\nu}$), and which determines at leading order the mean deformation of the bubble given by the aspect ratio ${\it\chi}$ of the ellipse equivalent to the bubble contour. We then show that in the reference frame associated with the bubble (having a fixed origin and axes corresponding to the minor and major axes of the equivalent ellipse) the characteristics of its oscillatory motion in the plane of the cell display remarkable properties in the range $1200<Re<3000$ and $h/d<0.4$. In particular, the velocity of the bubble presents along its path an almost constant component along its minor axis (fluctuations in time of approximately 5 %), given by $V_{a}/V_{b}\simeq 0.92$ for all $Re$. The dimensionless amplitude of oscillation of the angular velocity is also constant for all $Re$, $\tilde{r}d/V_{b}\simeq 0.75$, while that of the transverse velocity of the bubble (along its major axis) is given by $\tilde{V}_{t}/V_{b}\simeq 0.32{\it\chi}$, reaching values comparable to those of the axial velocity $V_{a}$ for the most deformed bubbles (${\it\chi}\approx 3$). Furthermore, the frequency $f$ of oscillation scales with the inertial time scale based on the transverse velocity of the bubble $\tilde{V}_{t}$, corresponding to a constant Strouhal number $St^{\ast }=fd/\tilde{V}_{t}\simeq 0.27$. Using high-frequency particle image velocimetry, we investigate in detail the properties of the wake associated with the oscillatory motion of sufficiently confined bubbles. We observe that vortex shedding occurs for a maximal transverse velocity $V_{t}$ of the bubble, corresponding to a maximal drift angle of the bubble. Furthermore, the measured vorticity of the vortex at detachment corresponds to the estimation $V_{b}{\it\chi}^{3/2}/d$ of the vorticity produced at the bubble surface. Three stages then emerge concerning the evolution in time of the wake generated by the bubble. For one to two periods of oscillation $T_{x}$ following the release of a vortex, a rapid decay of the vorticity of the released vortex is observed. Meanwhile, the released vortex located initially at a distance of approximately one diameter from the bubble centre moves outwards from the bubble path and expands. At intermediate times, the vortex street undergoes vortex pairing. When viscous effects become predominant at a time of the order of the viscous time scale ${\it\tau}_{{\it\nu}}=h^{2}/(4{\it\nu})$, the vortex street becomes frozen and decays exponentially in place.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3