Experimental study of the dynamics and mass transfer of single CO2 bubble accompanied by reactions in Hele-Shaw cell

Author:

Ding YudongORCID,Lu Changshen,Wang HongORCID,Cheng Min,Zhu XunORCID,Liao QiangORCID

Abstract

The reduction of carbon emissions has become a critical global issue, and the use of monoethanolamine (MEA) solution for CO2 absorption is prevalent in industry. To elucidate the mass transfer mechanisms in reactive multiphase flow, we employed high-speed photography and digital image processing to examine the dynamics and mass transfer behavior of CO2 bubbles in a Hele-Shaw cell. The results indicate that as the MEA solution concentration increases, oscillations during bubble ascent diminish, and the terminal velocity decreases. Based on changes in the mass transfer coefficient, the reaction process can be segmented into a phase of intensified mass transfer, marked by a rapid decrease in bubble equivalent diameter, and a phase of deteriorating mass transfer, where the diameter stabilizes. Additionally, we introduced a dimensionless mathematical model for the Sherwood number based on experimental findings, and its reliability was confirmed.

Funder

Innovative research guoup project of National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3