On the self-sustained nature of large-scale motions in turbulent Couette flow

Author:

Rawat Subhandu,Cossu CarloORCID,Hwang Yongyun,Rincon François

Abstract

Large-scale motions in wall-bounded turbulent flows are frequently interpreted as resulting from an aggregation process of smaller-scale structures. Here, we explore the alternative possibility that such large-scale motions are themselves self-sustained and do not draw their energy from smaller-scale turbulent motions activated in buffer layers. To this end, it is first shown that large-scale motions in turbulent Couette flow at $Re=2150$ self-sustain, even when active processes at smaller scales are artificially quenched by increasing the Smagorinsky constant $C_{s}$ in large-eddy simulations (LES). These results are in agreement with earlier results on pressure-driven turbulent channel flows. We further investigate the nature of the large-scale coherent motions by computing upper- and lower-branch nonlinear steady solutions of the filtered (LES) equations with a Newton–Krylov solver, and find that they are connected by a saddle–node bifurcation at large values of $C_{s}$. Upper-branch solutions for the filtered large-scale motions are computed for Reynolds numbers up to $Re=2187$ using specific paths in the $Re{-}C_{s}$ parameter plane and compared to large-scale coherent motions. Continuation to $C_{s}=0$ reveals that these large-scale steady solutions of the filtered equations are connected to the Nagata–Clever–Busse–Waleffe branch of steady solutions of the Navier–Stokes equations. In contrast, we find it impossible to connect the latter to buffer-layer motions through a continuation to higher Reynolds numbers in minimal flow units.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3