Direct numerical simulation of turbulent channel flow over porous walls

Author:

Rosti Marco E.ORCID,Cortelezzi Luca,Quadrio Maurizio

Abstract

We perform direct numerical simulations (DNS) of a turbulent channel flow over porous walls. In the fluid region the flow is governed by the incompressible Navier–Stokes (NS) equations, while in the porous layers the volume-averaged Navier–Stokes (VANS) equations are used, which are obtained by volume-averaging the microscopic flow field over a small volume that is larger than the typical dimensions of the pores. In this way the porous medium has a continuum description, and can be specified without the need of a detailed knowledge of the pore microstructure by independently assigning permeability and porosity. At the interface between the porous material and the fluid region, momentum-transfer conditions are applied, in which an available coefficient related to the unknown structure of the interface can be used as an error estimate. To set up the numerical problem, the velocity–vorticity formulation of the coupled NS and VANS equations is derived and implemented in a pseudo-spectral DNS solver. Most of the simulations are carried out at $Re_{{\it\tau}}=180$ and consider low-permeability materials; a parameter study is used to describe the role played by permeability, porosity, thickness of the porous material, and the coefficient of the momentum-transfer interface conditions. Among them permeability, even when very small, is shown to play a major role in determining the response of the channel flow to the permeable wall. Turbulence statistics and instantaneous flow fields, in comparative form to the flow over a smooth impermeable wall, are used to understand the main changes introduced by the porous material. A simulation at higher Reynolds number is used to illustrate the main scaling quantities.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3