Author:
Jalali Mir Abbas,Khoshnood Atefeh,Alam Mohammad-Reza
Abstract
Efficient mixing, typically characterised by chaotic advection, is hard to achieve in low Reynolds number conditions because of the linear nature of the Stokes equation that governs the motion. Here we show that low Reynolds number swimmers moving in quasi-periodic orbits can result in considerable stretching and folding of fluid elements. We accurately follow packets of tracers within the fluid domain and show that their trajectories become chaotic as the swimmer’s trajectory densely fills its invariant torus. The mixing process is demonstrated in two dimensions using the Quadroar swimmer that autonomously propels and tumbles along quasi-periodic orbits with multi-loop turning trajectories. We demonstrate and discuss that the streamlines of the flow induced by the Quadroar closely resemble the oscillatory flow field of the green alga Chlamydomonas reinhardtii. Our findings can thus be utilized to understand the interactions of microorganisms with their environments, and to design autonomous robotic mixers that can sweep and mix an entire volume of complex geometry containers.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献