Two-dimensional study on the motion and interactions of squirmers under gravity in a vertical channel

Author:

Nie DemingORCID,Ying Yuxiang,Guan Geng,Lin JianzhongORCID,Ouyang ZhenyuORCID

Abstract

We simulated the motions and interactions of circular squirmers under gravity in a two-dimensional channel at finite fluid inertia, aiming to provide a comprehensive analysis of the dynamic features of swimming microorganisms or engineered microswimmers. In addition to a squirmer-type factor (β), another control parameter (α) was introduced, representing ratio of the self-propelling strength to the sedimentation strength of squirmers. Simulations were performed at 0.4 ≤ α ≤ 1.2 and −5 ≤ β ≤ 5. We first considered the sedimentation of a single squirmer. Five patterns were revealed, depending on both α and β: steady downward falling, steady inclined falling or rising and small-scale or large-scale oscillating. Compared with a pusher (β < 0, gaining thrust from rear), a puller (β > 0, gaining thrust from front) is more likely to break down its symmetrical structure and subsequently lose stability, owing to the high-pressure regions on its lateral sides. Typically, a pusher settles faster than a puller, whereas a neutral squirmer (β = 0) settles in between. This is related to the ‘trailing negative flow’ behind a pusher and ‘leading negative flow’ before a puller. We then placed two squirmers in line with the gravity direction to study their interactions. Results show pullers attract each other and come into contact as a result of the low-pressure regions between them, whereas the opposite is observed for pushers. The interactions between two pullers are illustrated by their respective patterns. In contrast, pushers never come into contact and maintain distance from each other with increasing separation. We finally examined how a puller interacts with a pusher.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3