Kraichnan–Leith–Batchelor similarity theory and two-dimensional inverse cascades

Author:

Burgess B. H.,Scott R. K.,Shepherd T. G.

Abstract

AbstractWe study the scaling properties and Kraichnan–Leith–Batchelor (KLB) theory of forced inverse cascades in generalized two-dimensional (2D) fluids (${\it\alpha}$-turbulence models) simulated at resolution $8192^{2}$. We consider ${\it\alpha}=1$ (surface quasigeostrophic flow), ${\it\alpha}=2$ (2D Euler flow) and ${\it\alpha}=3$. The forcing scale is well resolved, a direct cascade is present and there is no large-scale dissipation. Coherent vortices spanning a range of sizes, most larger than the forcing scale, are present for both ${\it\alpha}=1$ and ${\it\alpha}=2$. The active scalar field for ${\it\alpha}=3$ contains comparatively few and small vortices. The energy spectral slopes in the inverse cascade are steeper than the KLB prediction $-(7-{\it\alpha})/3$ in all three systems. Since we stop the simulations well before the cascades have reached the domain scale, vortex formation and spectral steepening are not due to condensation effects; nor are they caused by large-scale dissipation, which is absent. One- and two-point p.d.f.s, hyperflatness factors and structure functions indicate that the inverse cascades are intermittent and non-Gaussian over much of the inertial range for ${\it\alpha}=1$ and ${\it\alpha}=2$, while the ${\it\alpha}=3$ inverse cascade is much closer to Gaussian and non-intermittent. For ${\it\alpha}=3$ the steep spectrum is close to that associated with enstrophy equipartition. Continuous wavelet analysis shows approximate KLB scaling $\mathscr{E}(k)\propto k^{-2}~({\it\alpha}=1)$ and $\mathscr{E}(k)\propto k^{-5/3}~({\it\alpha}=2)$ in the interstitial regions between the coherent vortices. Our results demonstrate that coherent vortex formation (${\it\alpha}=1$ and ${\it\alpha}=2$) and non-realizability (${\it\alpha}=3$) cause 2D inverse cascades to deviate from the KLB predictions, but that the flow between the vortices exhibits KLB scaling and non-intermittent statistics for ${\it\alpha}=1$ and ${\it\alpha}=2$.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference63 articles.

1. Farge, M. , Guezennec, Y. , Ho, C. M.  & Meneveau, C. 1990 Continuous wavelet analysis of coherent structures. In Proceedings of the Summer Prog. Cent. Turbulence Res., Stanford Univ. NASA-Ames, Stanford, CA.

2. Vortical control of forced two-dimensional turbulence

3. Nonrobustness of the two-dimensional turbulent inverse cascade

4. Intermittency in the two-dimensional inverse cascade of energy: Experimental observations

5. The emergence of isolated coherent vortices in turbulent flow

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3