The emergence of isolated coherent vortices in turbulent flow

Author:

Mcwilliams James C.

Abstract

A study is made of some numerical calculations of two-dimensional and geostrophic turbulent flows. The primary result is that, under a broad range of circumstances, the flow structure has its vorticity concentrated in a small fraction of the spatial domain, and these concentrations typically have lifetimes long compared with the characteristic time for nonlinear interactions in turbulent flow (i.e. an eddy turnaround time). When such vorticity concentrations occur, they tend to assume an axisymmetric shape and persist under passive advection by the large-scale flow, except for relatively rare encounters with other centres of concentration. These structures can arise from random initial conditions without vorticity concentration, evolving in the midst of what has been traditionally characterized as the ‘cascade’ of isotropic, homogeneous, large-Reynolds-number turbulence: the systematic elongation of isolines of vorticity associated with the transfer of vorticity to smaller scales, eventually to dissipation scales, and the transfer of energy to larger scales. When the vorticity concentrations are a sufficiently dominant component of the total vorticity field, the cascade processes are suppressed. The demonstration of persistent vorticity concentrations on intermediate scales - smaller than the scale of the peak of the energy spectrum and larger than the dissipation scales - does not invalidate many of the traditional characterizations of two-dimensional and geostrophic turbulence, but I believe it shows them to be substantially incomplete with respect to a fundamental phenomenon in such flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference40 articles.

1. Aref, H. 1980 Coherent features by the method of point vortices.WHOI Tech. Rep. 80-53,pp.233–249.

2. Charney, J. G. 1971 Geostrophic turbulence.J. Atmos. Sci. 28,1087–1095.

3. Rhines, P. B. 1975 Waves and turbulence on a beta-plane.J. Fluid Mech. 69,417–443.

4. Leith, C. E. & Kraichnan, R. 1972 Pedictability of turbulent flows.J. Atmos. Sci. 29,1041–1058.

5. McWilliams, J. C. et al. 1983 The local dynamics of eddies in the Western North Atlantic. In Eddies and Marine Science (ed. A. Robinson ),pp.92–113.Springer.

Cited by 1055 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3