Scaling of detonation velocity in cylinder and slab geometries for ideal, insensitive and non-ideal explosives

Author:

Jackson Scott I.,Short Mark

Abstract

Experiments were conducted to characterize the detonation phase-velocity dependence on charge thickness for two-dimensional detonation in condensed-phase explosive slabs of PBX 9501, PBX 9502 and ANFO. In combination with previous diameter-effect measurements from a cylindrical rate-stick geometry, these data permit examination of the relative scaling of detonation phase velocity between axisymmetric and two-dimensional detonation. We find that the ratio of cylinder radius ($R$) to slab thickness ($T$) at each detonation phase velocity ($D_{0}$) is such that $R(D_{0})/T(D_{0})<1$. The variation in the $R(D_{0})/T(D_{0})$ scaling is investigated with two detonation shock dynamics (DSD) models: a lower-order model relates the normal detonation velocity to local shock curvature, while a higher-order model includes the effect of front acceleration and transverse flow. The experimentally observed $R(D_{0})/T(D_{0})$ (${<}1$) scaling behaviour for PBX 9501 and PBX 9502 is captured by the lower-order DSD theory, revealing that the variation in the scale factor is due to a difference in the slab and axisymmetric components of the curvature along the shock in the cylindrical geometry. The higher-order DSD theory is required to capture the observed $R(D_{0})/T(D_{0})$ (${<}1$) scaling behaviour for ANFO. An asymptotic analysis of the lower-order DSD formulation describes the geometric scaling of the detonation phase velocity between the cylinder and slab geometries as the detonation phase velocity approaches the Chapman–Jouguet value.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference50 articles.

1. Asymptotic theory of evolution and failure of self-sustained detonations

2. Critical diameter and critical thickness of an emulsion explosive

3. Bdzil, J. B. , Aslam, T. D. , Catanach, R. A. , Hill, L. G.  & Short, M. 2002 DSD front models: nonideal explosive detonation in ANFO. In 12th International Detonation Symposium, pp. 409–417. Office of Naval Research, ONR 333-05-2.

4. Hill, L. G. 2012 Compilation of ambient PBX 9501 detonation speed data. Tech. Rep. Los Alamos National Laboratory.

5. Steady-state two-dimensional detonation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3