Validation of a detonation product equation of state for an insensitive high explosive via slab geometry expansion tests

Author:

Anderson Eric K.1ORCID,Voelkel Stephen J.1ORCID,Short Mark1ORCID,Chiquete Carlos1ORCID,Jackson Scott I.2ORCID

Affiliation:

1. Los Alamos National Laboratory 1 , P.O. Box 1663, Los Alamos, New Mexico 87545, USA

2. Department of Aerospace Engineering, Texas A&M University 2 , College Station, Texas 77843-3141, USA

Abstract

Slab expansion (SLABEX) tests are conducted to validate a process for calibrating the detonation products equation of state (EOS) of a high explosive (HE). The SLABEX tests use rectangular slabs of PBX 9502, a polymer-bonded HE formulation consisting of 95 wt.% 1,3,5-triamino-2,4,6-trinitrobenzene bound with Kel F-800, a co-polymer of chlorotrifluoroethylene and vinylidene-fluoride. Three PBX 9502 slab thicknesses are examined, each confined symmetrically by two rectangular copper (Cu) plates approximately one-tenth the thickness of the HE slab. For the duration of each experiment, the detonation flow along the central axis of the PBX 9502 slab remains two-dimensional. The lateral flow velocity component of the outer surfaces of the expanding Cu plates is measured, along with the steady axial detonation speed along the central axis of the SLABEX. Hydrodynamic simulations of the Cu plate expansion in the SLABEX geometry, driven by the energy stored in the detonation products by the detonation combustion event, are conducted using a Jones–Wilkins–Lee EOS for the detonation products. This EOS form was recently parameterized for PBX 9502 in the cylinder expansion test geometry using a newly developed calibration technique [Voelkel et al., Combust. Flame 246, 112373 (2022)]. Good agreement between the experiment and prediction is found in each SLABEX test, demonstrating that the detonation product EOS calibration technique produces EOSs that are predictive when applied to other geometries.

Funder

Los Alamos National Laboratory

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3