Anti-icing performance of hydrophobic material used for electromechanical drill applied in ice core drilling

Author:

Cao PinluORCID,Chen Zhuo,Cao Hongyu,Chen Baoyi,Zheng Zhichuan

Abstract

AbstractUsing an anti-icing coating to prevent ice accretion on the drill surface is a feasible solution to address the drilling difficulties in warm ice. In this study, four types of commercially available hydrophobic coating materials were tested to evaluate their water repellency and anti-icing properties, namely, a mixture of silica and fluorocarbon resin with polytrifluoroethylene, modified Teflon, silica-based emulsion and an acrylic-based copolymer. Their water contact angles are ~107°, 101°, 114° and 95°, respectively. All these hydrophobic coatings can significantly reduce the strength of the ice adhesion within a temperature range of −10 to −30°C on a planar or curved surface. The coating of an acrylic-based copolymer, in particular, can reduce the average tensile strength and the shear strength of the ice adhesion by 87.08 and 97.11% on planar surfaces at −30°C, and by 98.06 and 96.15% on a curved surface, respectively. The main challenge in the practical application of these coatings is their durability. An acrylic-based copolymer coating will lose its water repellency performance after 140 cycles of abrasion. The shear strength of ice adhered on curved surfaces coated with this material will approach that achieved on uncoated surfaces after 11 cycles of icing and de-icing tests.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3