Comprehensive Measurement of the Adhesion between Ice or Glass and Model PDMS Coatings

Author:

Bellido-Aguilar Daniel Angel1ORCID,Safaripour Maryam1,VanDonselaar Kurt2,Ndunagum Leo-Stanley Chibuike3,Webster Dean C.1ORCID,Croll Andrew B.23ORCID

Affiliation:

1. Department of Coatings and Polymeric Materials North Dakota State University 1340 Administration Ave Fargo ND 58108 USA

2. Department of Physics North Dakota State University 1340 Administration Ave Fargo ND 58108 USA

3. Materials and Nanotechnology Program North Dakota State University 1340 Administration Ave Fargo ND 58108 USA

Abstract

Ice accretion is an unavoidable phenomenon that endangers the performance of outdoor infrastructure and vehicles at low temperatures. To combat ice accretion, the use of anti‐icing coatings has been one of the most appealing approaches because of their simplicity. Silicone elastomers have been increasingly employed due to their natural hydrophobicity, simple preparation, and low price. However, most of the characterization of silicone‐based polymers and other anti‐icing coatings has been done using unproven techniques that often do not directly relate to materials’ properties. In this work, the adhesion between glass and ice and four PDMS‐based elastomers has been studied by a combination of a macroscale shear test, a microscale technique (the Johnson–Kendall–Roberts (JKR) approach), and a commonly used push‐off test. Results are obtained at different temperatures and, importantly, different test velocities. The shear tests yield an energy release rate (the material's property related to adhesion) in the range of 1–10 J m−2, whereas the quasistatic JKR test yields values in the 0.1–0.5 J m−2 range for glass/PDMS interfaces. Ice/PDMS interfaces are found to have larger energy release rates in shear tests and lower values in quasistatic JKR tests. Both differences can be attributed to differences in interfacial crack dynamics.

Funder

Office of Naval Research

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Silicone elastomers and the Persson-Brener adhesion model;The Journal of Chemical Physics;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3