Selecting and ranking leading cases in Brazilian Supreme Court decisions

Author:

De Souza Jackson JoséORCID,Finger Marcelo,de Araújo Jorge Alberto A.,Maranhão Juliano

Abstract

Abstract This work studies quantitative measures for ranking judicial decisions by the Brazilian Supreme Court [Supremo Tribunal Federal (STF)] and selecting leading cases, which are understood as those with broadness of influence on different legal fields. The measures are based on a network built over decisions whose cases were finalized in the Brazilian Supreme Court between 01/2001 and 12/2019, which were obtained by crawling publicly available STF records. Three ranking measures are proposed; two are adaptations of the PageRank algorithm, and one adapts Kleinberg’s algorithm. Such measures are compared with respect to agreement on top 100 rankings; we also analyze each robustness measure based on self-agreement under perturbation. We examine whether the resulting quantitative ranking is congenial to a qualitative intuition of what the legal community usually considers as relevant precedents. We also discuss some possible criteria of relevance in the seek for patterns that suggest how quantitative and qualitative measures would better align. The ranking of leading cases and relevant decisions improved after building decision networks without irrelevant appeals and decisions that overflow the court offers a starting point to discuss the role of STF in the Brazilian judicial system. In our last work, both versions of PageRank and Kleinberg algorithms produced different rankings and all of them were robust with respect to 10% and 20%-perturbation levels, but none of them retrieved leading cases at the top of these rankings. Then, we took a further step in the studies of the STF decision network and we introduced better filtering of network nodes guided by legal expertise on the works of the Supreme Court. We also introduced more fine-grained perturbance levels to understand the impact of such filters in the STF decision network. We concluded that after filtering low-relevance decision types, the STF decision network is still robust under 10%-perturbation, but it presents higher degradation by increasing perturbation levels. The two versions of PageRank still produce different rankings. Kleinberg’s algorithm provides a different ranking, with many relevant criminal cases. Although we improved algorithms rankings filtering decisions from the network, which represents an important methodological step, there is still room for improvement. Given that relevant decisions are well ranked after filtering out a large amount of irrelevant decisions, the results set a starting point to discuss the role of STF in the Brazilian judicial system.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Reference31 articles.

1. Barabási, A.-L. & Pósfai, M. 2016. Network science. Cambridge.: Cambridge University Press, URL: Available at: http://barabasi.com/networksciencebook/.

2. PEDIDOS DE VISTA NO TRIBUNAL SUPERIOR ELEITORAL

3. Vojvodic, A.d M. 2012. Precedentes e argumentação no supremo tribunal federal: Entre a vinculação ao passado e a sinalização para o futuro, URL: PhD thesis. Universidade de São Paulo Law School, https://teses.usp.br/teses/disponiveis/2/2134/tde-27092012-094000/pt-br.php.

4. Federal, Supremo Tribunal 2022. Pesquisa de jurisprudência - STF. Accessed 17-August-2022. Available at: URL: https://jurisprudencia.stf.jus.br/pages/search.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3